Qc

Qo

TMzag

TMzsq

TMzmg

tectonic contact

Mzg

intrusive contact

Pzsp

Pzp

tectonic contact ?

tectonic contact ?

< Pzb

Pzmg <= _m_>

section buried

Pzm

Pzq

in marshes and around lakes

deposits. Cross-hatchured on terrace levels

CRETACEOUS, OR JURASSIC (?))

common throughout the unit

only, see Wilson, 1980)

rock fragments in a medium to fine-grained matrix

quartzite. Locally is mylonitic to ultramylonitic

calc-silicates. Interlayered with mylonite gneiss in places

contains abundant sillimanite in Boyds Quadrangle to north (Wilson, 1980)

ROCKS OF THE KETTLE GNEISS DOME (EOCENE, PALEOCENE,

SURFICIAL UNITS

Pzph

Pzmg

Pzcp

Pzm

Pzs

Pzg

Qc

Qo

Qt

TMzq

TMza

TMzag

TMzmg

TMzsq

TMzms

TMzpg

Qt

TMzq

CORRELATION OF MAP UNITS

QUATERNARY

MESOZOIC (?)

PALEOZOIC

TERTIARY or MESOZOIC

Holocene and/or

Eocene, Paleocene,

DESCRIPTION OF MAP UNITS

COLLUVIUM (HOLOCENE) Landslides in outwash along the Columbia River (Jones and others, 1961)

LACUSTRINE DEPOSITS (HOLOCENE AND/OR PLEISTOCENE) Fine-grained sediments with some peat

OUTWASH (PLEISTOCENE) Light brown, loosely-consolidated, moderately-sorted sand and gravel

QUARTZITE Light brown to reddish brown, fine to medium-grained quartzite with thin muscovite folia,

interlayered with muscovite schist and rare biotite schist. Also contains veins of massive white

AMPHIBOLITE Black, medium-grained, hornblende-feldspar gneiss and schist with minor pegmatite and

ultramylonitic. Similar to minor pegmatite and alaskite bodies found throughout the gneiss dome

ALASKITE GNEISS White, medium to coarse-grained, feldspar-quartz-muscovite gneiss, locally mylonitic to

MYLONITE GNEISS Gray, medium-grained, feldspar-quartz-biotite-muscovite gneiss, locally chloritic; dominatly

a mylonite gneiss, but locally developes mylonites, blastomylonites, and ultramylonites in thin zones,

SILLIMANITE QUARTZITE Gray to brown, fine to medium-grained quartzite with biotite and muscovite. Unit

sillimanite schist and gneiss with minor gray to brown quartzite (structure section only, see Wilson, 1980)

cm-long K-feldspar porphyoclasts. Contains layers of biotite-hornblende-feldspar schist (structure section

PORPHYROCLASTIC GNEISS Gray, medium to coarse-grained, feldspar-quartz-biotite gneiss with local 1 to 5

MARBLE AND SILLIMANITE SCHIST Interlayered white, coarse-grained marble and biotite-quartz-feldspar-

This map is preliminary and has not been reviewed for

stratigraphic nomenclature.

conformity with U. S. Geological Survey editorial standards and

particularly in the upper part of the unit. Thin pegmatite and alaskite bodies, commonly mylonitic, are

TILL (PLEISTOCENE) Gray to light brown, unsorted and unstratified deposits of subangular to subrounded

Cretaceous, or Jurassic (?)

Pleistocene

Pleistocene

OPEN-FILE REPORT

POSSIBLE FAULT STRIKE AND DIP OF FOLIATION AND LAYERING 2 Earlier, penetrative foliation 3 Horizontal earlier foliation³ 123 Compositional layering, may be bedding in places 117 Later, nonpenetrative, mylonitic foliation TREND AND PLUNGE OF LINEATION

Inclined earlier lineation Horizontal earlier lineation Inclined later, mylonitic lineation TREND AND PLUNGE OF MINOR FOLD AXES 9 Tight to isoclinal, recumbent folds, commonly intrafolial type 77 12 Asymmetric, commonly overturned usually kink-like folds

dotted where concealed, barbs on upper block

X 2 Gentle to open, upright folds STRIKE AND DIP OF JOINTS 2 81 Inclined, numerous in outcrop Vertical, numerous in outcrop 079

Inclined, less numerous in outcrop Vertical, less numerous in outcrop TREND OF GLACIAL STRIATIONS

MINES AND PROSPECTS Adit

Shaft Open pit Prospect

> Materials mined: b, building stone; g, gravel; p, pegmatite (probably Uranium); Cu, Copper (?): Fe, Iron (?); ACME, Sb, As, Cu, Au, Pb, Ag, Zn; ALMA, Au, Pb, Ag, Zn (Huntting, 1956) NOTES

1 Age given is age of internal deformation and terminal metamorphism

2 Symbols are combined at location measured

3 Older foliation and lineation may be later mylonitization in places but was not recognized due to poor exposures

REFERENCES CITED Huntting, M. T., 1956, Inventory of Washington minerals - Part 2, Metallic minerals: Washington Division of Mines and Geology Bulletin 37, 2 vols., 495 p.

Jones, F. O., Embody, D. R., and Peterson, W. L., 1961, Landslides along the Columbia River valley, northeastern Washington: U. S. Geological Survey Professional Paper 367, 98p.

Wilson, J. R., 1980, Preliminary geologic map of the Boyds Quadrangle, Ferry and Stevens counties, Washington: U. S. Geological Survey Open-File Report 80-893

Sea level

STRUCTURE SECTIONS 4000 Trout Creek 4000 Bisbee Mountain Qt **TMzmg** TMza Qo 3000 3000 **TMzmg** TMzsq Columbia 2000' TMzpg TMZms River 2000 1000 1000 TMZq — Older foliation Density of lines indicates 4000 La Fleur 4000 Bold Hill Creek TMzmg 3000 2000 2000 Columbia River 1000 Older foliation Density of lines indicates intensity of development in field Sea level

GEOLOGIC MAP OF THE BANGS MOUNTAIN QUADRANGLE, FERRY and STEVENS COUNTIES, WASHINGTON